Operator Training in HDR Brachytherapy: Preventing Treatment Errors

Zoubir Ouhib, MS, DABR
The Lynn Cancer Institute at Boca Raton Regional Hospital
Boca Raton, FL

Disclosure

Zoubir Ouhib, MS, DABR, is a speaker for ELEKTA and Varian.
Learning Objectives

- Be familiar with methods of training
- Understand the correlation between training and treatment errors in high-dose-rate (HDR) brachytherapy
- Understand how treatment errors occur
- How to maintain a safe HDR brachytherapy program and reduce errors
- Understand the importance of items like checklists, peer review, policies and procedures, QA
- Importance of continuing quality improvement

Methods of Training

- Manufacturer training
- Proctor training
- Training from professional associations and institutions
- Peer review
- Re-training
Manufacturer Training

- Application specialist: software and hardware (clinical advice usually excluded)
- To be offered to the whole team
- Details to be clearly defined at time of purchase: time, agenda, documentation
- Should be part of the purchase and not itemized
- Should be a combination of didactic and hands on
- Should be scheduled no more than few weeks prior to procedure implementation

Proctor Training

- To be done by a qualified individual (Radiation Oncologist, medical physicist)
- Clinically oriented training
- Clear agenda of the training prior to procedure
- To be provided to more than one person (valuable for back up and peer review later)
- Opportunity for drafting P.P.
- How to perform the procedure safely and address all possible clinical issues associated with it
- Should be done for a minimum of 3 cases
- Opportunity for proctor to provide feedback to the team on possible improvements
Annual “external” Review

• Should be done on an annual basis for the whole brachytherapy program (required for accreditation)
• Opportunity to evaluate the procedures (simulation, planning, treatment delivery, documentation, QA, calibration, communication, outcome, toxicity, errors)
• Opportunity for improvement

Weekly Peer Review

• Chart rounds (members of the brachy team)
• Tumor board
Professional Associations, Institutions, and Other Manufacturer Training

• ASTRO, ESTRO, AAPM, ABS: workshops, schools, and brachy fellowship (ABS for A.U. and QMP)
• Academic institutions (MD Anderson, Memorial, Stanford, Cleveland Clinic, etc...): workshops
• Manufacturers, schools, webinars, workshops

Training Factor and Treatment Errors

• ACMUI (Advisory Committee on the Medical Use of Isotopes) Report 2011:
 Rate of M.E. 2009 and 2010: 0.02%
 (8 per 33,000 TX)
• Failures to follow departmental guidance
• Human failures in performing tasks
Review of Medical errors for HDR cases 2000-2013 (ZO)

<table>
<thead>
<tr>
<th>Years</th>
<th># cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5</td>
</tr>
<tr>
<td>2001</td>
<td>23</td>
</tr>
<tr>
<td>2002</td>
<td>10</td>
</tr>
<tr>
<td>2003</td>
<td>6</td>
</tr>
<tr>
<td>2004</td>
<td>9</td>
</tr>
<tr>
<td>2005</td>
<td>16</td>
</tr>
<tr>
<td>2006</td>
<td>25</td>
</tr>
<tr>
<td>2007</td>
<td>9</td>
</tr>
<tr>
<td>2008</td>
<td>10</td>
</tr>
<tr>
<td>2009</td>
<td>35</td>
</tr>
<tr>
<td>2010</td>
<td>17</td>
</tr>
<tr>
<td>2011</td>
<td>18</td>
</tr>
<tr>
<td>2012</td>
<td>12</td>
</tr>
</tbody>
</table>

Total= 198

HDR ERRORS

<table>
<thead>
<tr>
<th>Procedures</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong Length</td>
<td>93</td>
</tr>
<tr>
<td>Overdose</td>
<td>20</td>
</tr>
<tr>
<td>Underdose</td>
<td>22</td>
</tr>
<tr>
<td>Hardware/software</td>
<td>17</td>
</tr>
<tr>
<td>Others</td>
<td>44</td>
</tr>
<tr>
<td>Wrong patient</td>
<td>2</td>
</tr>
</tbody>
</table>

Total= 198

Others: source stuck, personnel exposure
HDR Procedures

<table>
<thead>
<tr>
<th>Years</th>
<th># cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>5</td>
</tr>
<tr>
<td>Esophagus</td>
<td>4</td>
</tr>
<tr>
<td>Prostate</td>
<td>24</td>
</tr>
<tr>
<td>Breast</td>
<td>30</td>
</tr>
<tr>
<td>Lung</td>
<td>7</td>
</tr>
<tr>
<td>GYN</td>
<td>49</td>
</tr>
<tr>
<td>Others</td>
<td>43</td>
</tr>
</tbody>
</table>

Total=162

Similar Sources of errors from HDR data

- Lack or inadequate training, competency of individuals
- Communication issues
- Lack of documented procedures
- Human errors contribute to more than 80% events
- Equipment issues (hardware and software)
- Others
Types of errors

- Incorrect dose delivery due to:
 a) Incorrect step size
 b) Incorrect reference points
 c) Incorrect treatment setup
 d) Incorrect source Indexer length

- Incorrect body site treated
- Mechanical failure

Why do errors occur? Training factor

- Increased complexity of advancing technology => more opportunities for errors T
- Lack of knowledge, education, information, inexperience T
- Teamwork: poor communication T
- Time shortage/fatigue
- Equipment failure and poor feedback from system T
- Poor instructions/procedures (manufacturers, within) T
- Wrong person doing the wrong task T
- Lack of proper equipment T
- Inattention/distraction T
Why do errors occur? Training factor (Cont’d)

- Poor organizational safety culture (proactive one)
- Poor morale
- Poor supervision/checking
- Misperceptions of hazards
- False belief that bad outcomes won’t happen to us
- Emotional state (anger, stress, etc...)
- Power factor/hostile environment

Lessons Learned

- Errors are inevitable and no one is immune
- Training does not address all issues
- Look for risks and errors, and do not assume things are correct
- Constructive questioning attitude
- Human factor is a significant contributor to treatment errors
- Evolving technology => new errors replace old ones
Lessons Learned (Cont’d)

- Current approach: evaluate items after an error
- Better approach: investigate processes and applications for potential problems in a continuous way
- Complete testing: pass and fail options
- Identify sources of errors and provide permanent solutions as a team
- Avoid rushing to the use or implementation of something new (device, procedure)?

Can We Learn From Others?

- Reporting errors is a good start but, without additional concrete goals, will not help reduce them
- Report: detailed information of the source(s) of error, conditions, and implemented solutions to assist self and others
- Information should be available in an efficient and rapid way to avoid similar ones from happening elsewhere
- Users meeting session to discuss patient safety/errors, solutions, and improvements
Can We Learn From Others? (Cont’d)

- Create vendor and users website for information sharing (Manufacturer website)
- R0-ILS (Radiation Oncology Incident Learning System) sponsored by ASTRO and AAPM
- Errors should be used as an opportunity for a refresher training and risk audit
- “Near misses” should be available to others to avoid actual ones
- Will events be part of CMS payments in the future?
 more events ➔ less payment ➔ better Q.I

When is re-training needed?

- Too many close calls or near misses
- Unexpected patient outcomes
- Not doing enough cases to maintain skills, expertise
- Individuals uncertain about their actions
- Staff not following P&P, Checklists
- New Software/hardware or upgrade
- Wrong person doing the wrong thing
- Staff on rotation
- Patients reminding staff about Tx details
Can You Reduce Treatment Errors?

• Design and **implement** a good QA
• Implement and use practical checklists (specific not generic)
• Link safety and cost savings (financial)
• Use Root Cause Analysis
• Educate staff about errors and legal ramifications
• Focus on systems and not on individuals
• Learn from mistakes (own and others)
• Focus on staff competency (invest a little now to avoid paying more later)
• Question is not “if an institution can afford training their staff” but rather “can it afford not to train them”?
• Implement annual peer review
• Seek advice and clarification at all time
• Use published guidelines

Training dilemma!!

Corporate Dilemma

What if we train them and they leave?

What if we don’t... and they stay?

Investing in Employees
Possible Consequences From a Medical Event

- Could have a devastating effect on patients/family and changes someone’s life
- Increase staff job-related stress and cause significant emotional distress
- Impact on the facility
- Impact on the modality
- We are human and errors are bound to happen and therefore we need to be vigilant at all times in this field (No matter how good we think we are!)

Remember: No human is infallible
Thank you